Semi-discrete central-upwind schemes with reduced dissipation for Hamilton–Jacobi equations

نویسنده

  • STEVE BRYSON
چکیده

We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton–Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in Kurganov, Noelle and Petrova (2001, SIAM J. Sci. Comput., 23, pp. 707–740). We provide the details of the new family of methods in one, two, and three space dimensions, and then verify their expected low-dissipative property in a variety of examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton–Jacobi equations

We present the first fifth-order, semi-discrete central-upwind method for approximating solutions of multi-dimensional Hamilton–Jacobi equations. Unlike most of the commonly used high-order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov–Tadmor and Kurganov– Noelle–Petrova, and is derived for an arbitrary number of space dimension...

متن کامل

Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations

We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282; A. Kurganov and D. Levy, SIAM J. Sc...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

New High-Resolution Semi-discrete CentralSchemes for Hamilton–Jacobi Equations

We introduce a new high-resolution central scheme for multidimensional Hamilton–Jacobi equations. The scheme retains the simplicity of the non-oscillatory central schemes developed by C.-T. Lin and E. Tadmor (in press, SIAM J. Sci. Comput.), yet it enjoys a smaller amount of numerical viscosity, independent of 1/1t. By letting 1t ↓ 0 we obtain a new second-order central scheme in the particular...

متن کامل

On the Reduction of Numerical Dissipation in Central-Upwind Schemes

We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [13]. Similarly to staggered non-oscillatory central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality and robustness. At the same time, the central-upwind framework allows one to decrease a relative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004